EMF Health-effects Research
RF dosimetry: a comparison between power absorption of female and male numerical models from 0.1 to 4 ghz Sandrini L, Vaccari A, Malacarne C, Cristoforetti L, Pontalti R. Phys Med Biol. 49(22):5185-5201, 2004 Sandrini L, Vaccari A, Malacarne C, Cristoforetti L, Pontalti R. RF dosimetry: a comparison between power absorption of female and male numerical models from 0.1 to 4 ghz. Phys Med Biol. 49(22):5185-5201, 2004. Realistic numerical models of human subjects and their surrounding environment represent the basic points of radiofrequency (RF) electromagnetic dosimetry. This also involves differentiating the human models in men and women, possibly with different body shapes and postures. In this context, the aims of this paper are, firstly, to propose a female dielectric anatomical model (fDAM) and, secondly, to compare the power absorption distributions of a male and a female model from 0.1 to 4 GHz. For realizing the fDAM, a magnetic resonance imaging tomographer to acquire images and a recent technique which avoids the discrete segmentation of body tissues into different types have been used. Simulations have been performed with the FDTD method by using a novel filtering-based subgridding algorithm. The latter is applied here for the first time to dosimetry, allowing an abrupt mesh refinement by a factor of up to 7. The results show that the whole-body-averaged specific absorption rate (WBA-SAR) of the female model is higher than that of the male counterpart, mainly because of a thicker subcutaneous fat layer. In contrast, the maximum averaged SAR over 1 g (1gA-SAR) and 10 g (10gA-SAR) does not depend on gender, because it occurs in regions where no subcutaneous fat layer is present. |